Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Environ Toxicol Chem ; 41(10): 2613-2621, 2022 10.
Article in English | MEDLINE | ID: covidwho-2027344

ABSTRACT

Increased disinfection efforts in various parts of China, including Hong Kong, to prevent the spread of the novel coronavirus may lead to elevated concentrations of disinfectants in domestic sewage and surface runoff in Hong Kong, generating large quantities of toxic disinfection byproducts. Our study investigated the presence and distribution of four trihalomethanes (THMs), six haloacetic acids (HAAs), and eight nitrosamines (NAMs) in rivers and seawater in Hong Kong. The concentrations of THMs (mean concentration: 1.6 µg/L [seawater], 3.0 µg/L [river water]), HAAs (mean concentration: 1.4 µg/L [seawater], 1.9 µg/L [river water]), and NAMs (mean concentration: 4.4 ng/L [seawater], 5.6 ng/L [river water]) did not significantly differ between river water and seawater. The total disinfection byproduct content in river water in Hong Kong was similar to that in Wuhan and Beijing (People's Republic of China), and the total THM concentration in seawater was significantly higher than that before the COVID-19 pandemic. Among the regulated disinfection byproducts, none of the surface water samples exceeded the maximum index values for THM4 (80 µg/L), HAA5 (60 µg/L), and nitrosodimethylamine (100 ng/L) in drinking water. Among the disinfection byproducts detected, bromoform in rivers and seawater poses the highest risk to aquatic organisms, which warrants attention and mitigation efforts. Environ Toxicol Chem 2022;41:2613-2621. © 2022 SETAC.


Subject(s)
COVID-19 , Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Dimethylnitrosamine , Disinfectants/analysis , Disinfection , Halogenation , Hong Kong , Humans , Pandemics , Pilot Projects , Sewage , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis
2.
Environ Int ; 163: 107192, 2022 05.
Article in English | MEDLINE | ID: covidwho-1838749

ABSTRACT

Due to extensive COVID-19 prevention measures, millions of tons of chemicals penetrated into natural environment. Alterations of human viruses in the environment, the neglected perceiver of environmental fluctuations, remain obscure. To decipher the interaction between human viruses and COVID-19 related chemicals, environmental samples were collected on March 2020 from surroundings of designated hospitals and receivers of wastewater treatment plant effluent in Wuhan. The virus community and chemical concentration were respectively unveiled in virtue of virome and ultra-high-performance liquid chromatography-tandem mass spectrometry. The complex relationship between virus and chemical was ulteriorly elaborated by random forest model. As an indicator, environmental viruses were corroborated to sensitively reflect the ecological disturbance originated from pandemic prevention supplies. Chemicals especially trihalomethanes restrained the virus community diversity. Confronting this adverse scenario, Human gammaherpesvirus 4 and Orf virus with resistance to trihalomethanes flourished while replication potential of Macacine alphaherpesvirus 1 ascended under glucocorticoids stress. Consequently, human viruses lurking in the environment were actuated by COVID-19 prevention chemicals, which was a constant burden to public health in this ongoing pandemic. Besides, segments of SARS-CoV-2 RNA were detected near designated hospitals, suggesting environment as a missing link in the transmission route. This research innovatively underlined the human health risk of pandemic prevention supplies from the virus - environment interaction, appealing for monitoring of environmental viruses in long term.


Subject(s)
COVID-19 , Humans , Pandemics/prevention & control , RNA, Viral/genetics , SARS-CoV-2 , Trihalomethanes , Wastewater
3.
Environ Sci Technol ; 55(7): 4103-4114, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1392753

ABSTRACT

Intensified efforts to curb transmission of the Severe Acute Respiratory Syndrome Coronavirus-2 might lead to an elevated concentration of disinfectants in domestic wastewater and drinking water in China, possibly resulting in the generation of numerous toxic disinfection byproducts (DBPs). In this study, the occurrence and distribution of five categories of DBPs, including six trihalomethanes (THMs), nine haloacetic acids (HAAs), two haloketones, nine nitrosamines, and nine aromatic halogenated DBPs, in domestic wastewater effluent, tap water, and surface water were investigated. The results showed that the total concentration level of measured DBPs in wastewater effluents (78.3 µg/L) was higher than that in tap water (56.0 µg/L, p = 0.05), followed by surface water (8.0 µg/L, p < 0.01). Moreover, HAAs and THMs were the two most dominant categories of DBPs in wastewater effluents, tap water, and surface water, accounting for >90%, respectively. Out of the regulated DBPs, none of the wastewater effluents and tap water samples exceeded the corresponding maximum guideline values of chloroform (300 µg/L), THM4 (80 µg/L), NDMA (100 ng/L), and only 2 of 35 tap water samples (67.6 and 63.3 µg/L) exceeded the HAA5 (60 µg/L) safe limit. HAAs in wastewater effluents showed higher values of risk quotient for green algae. This study illustrates that the elevated use of disinfectants within the guidance ranges during water disinfection did not result in a significant increase in the concentration of DBPs.


Subject(s)
COVID-19 , Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , China , Disinfectants/analysis , Disinfection , Drinking Water/analysis , Humans , Pandemics , SARS-CoV-2 , Trihalomethanes/analysis , Wastewater , Water , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 55(15): 10534-10541, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1270648

ABSTRACT

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , Aquatic Organisms , Disinfectants/toxicity , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Water Res ; 198: 117138, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1174530

ABSTRACT

Intensified sanitization practices during the recent coronavirus disease-2019 (COVID-19) led to the release of chlorine-based disinfectants in surface water, potentially triggering the formation of disinfection byproducts (DBPs) in the presence of dissolved organic nitrogen (DON). Thus, a comprehensive investigation of DON's spatial distribution and its association with DBP occurrence in the surface water is urgently needed. In this study, a total of 51 water samples were collected from two rivers and four lakes in May 2020 in Wuhan to explore the regional variation of nitrogen (N) species, DON's compositional characteristics, and the three classes of DBP occurrence. In lakes, 53.0% to 86.3% of N existed as DON, with its concentration varying between 0.3-4.0 mg N/L. In contrast, NO3--N was the dominant N species in rivers. Spectral analysis revealed that DON in the lakes contained higher humic and fulvic materials with higher A254, A253/A203, SUVA254, and PIII+IV/PI+II+V ratios, while rivers had higher levels of hydrophilic compounds. Trihalomethanes (THMs) were the most prevalent DBPs in the surface waters, followed by N-nitrosamines and haloacetonitriles (HANs). The levels of N-nitrosamines (23.1-97.4 ng/L) increased significantly after the outbreak of the COVID-19 pandemic. Excessive DON in the surface waters was responsible for the formation of N-nitrosamines. This study confirmed that the presence of DON in surface water could result in DBP formation, especially N-nitrosamines, when disinfectants were discharged into surface water during the COVID-19 pandemic.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Humans , Nitrogen/analysis , Pandemics , SARS-CoV-2 , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL